Problem 1

(Courtesy J. Moran)
Suppose you are given the option of searching for a point radio source (e.g., a Gamma Ray Burst, or GRB) of uncertain position with a big dish of diameter D that has only one receiver, or with an interferometric array of N elements of diameter d, with maximum baseline D. Assume that the source size is $< \lambda/D$ and its position uncertainty is $\pm \lambda/d$. Also, assume that the instruments have the same bandwidth and receiver temperatures. If you can have the same amount of total integration time on either instrument, which would you choose?

Problem 2

(Courtesy J. Moran)
Let’s explore the performance of radiometers that have detectors that do not have a “square law” characteristic, i.e., $v_3 \neq v_2^2$. Consider a radiometer with a linear detector instead of a square law detector, as shown below:

![Radiometer Diagram]

Assume:
$v_3 = |v_2|$
$< v_2 > = 0$
$< v_2^2 > = kBG(T_R + T_A)$
Also assume that the signals are weak ($T_A \ll T_R$).
A) Show that

\[< v_4 > = \sqrt{\frac{2}{\pi} kBG(T_R + T_A)} \]

(1)

and hence that the term representing the signal is

\[\approx T_A \sqrt{\frac{kBG}{2\pi T_R}} \]

(2)

B) Show that the rms noise, \(\sigma_4 \), is

\[\approx \sqrt{\frac{(1 - \frac{9}{2}) kBG T_R}{2 B \tau}} \]

(3)

and that the radiometer sensitivity given by the equation

\[\Delta T = \frac{\sigma_4}{\frac{\partial < v_4 >}{\partial T_A}} \]

(4)

is

\[\Delta T = \frac{1.07 T_R}{\sqrt{B \tau}} \]

(5)

Hence, this type of receiver is 7% worse than the square law detector receiver, and is linear in power only at low signal levels.
Problem 3

(Courtesy J. Moran)

I took the following calibration data on one of the antennas of the VLA in order to estimate the receiver temperature and the atmospheric opacity: The sources are weak enough that their contribution to the system temperature is negligible. Assume that the atmosphere is stable with time and can be modeled as a plane parallel absorbing medium. The calibration temperature (T_{Cal}) is 12.5 K ($T_{Sys} = T_{Rx} + T_{Atmosphere}$). Estimate the receiver temperature and the zenith opacity.

<table>
<thead>
<tr>
<th>Time (UT)</th>
<th>Source</th>
<th>Elevation (°)</th>
<th>T_{Sys}/T_{Cal}</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:13</td>
<td>NGC3079</td>
<td>15</td>
<td>11.1</td>
</tr>
<tr>
<td>23:37</td>
<td>NGC3079</td>
<td>18</td>
<td>10.6</td>
</tr>
<tr>
<td>23:44</td>
<td>0917+624</td>
<td>27</td>
<td>9.6</td>
</tr>
<tr>
<td>00:30</td>
<td>4C39.25</td>
<td>23</td>
<td>10.0</td>
</tr>
<tr>
<td>00:50</td>
<td>0917+624</td>
<td>34</td>
<td>9.1</td>
</tr>
<tr>
<td>01:15</td>
<td>4C39.25</td>
<td>23</td>
<td>10.0</td>
</tr>
<tr>
<td>02:20</td>
<td>0917+624</td>
<td>45</td>
<td>8.9</td>
</tr>
<tr>
<td>04:50</td>
<td>0917+624</td>
<td>60</td>
<td>8.8</td>
</tr>
<tr>
<td>05:44</td>
<td>NRAO150</td>
<td>81</td>
<td>8.6</td>
</tr>
<tr>
<td>06:50</td>
<td>0917+624</td>
<td>61</td>
<td>8.9</td>
</tr>
</tbody>
</table>